36 research outputs found

    DNA Checkpoint and Repair Factors Are Nuclear Sensors for Intracellular Organelle Stresses-Inflammations and Cancers Can Have High Genomic Risks.

    Get PDF
    Under inflammatory conditions, inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) which cause DNA damage. If not appropriately repaired, DNA damage leads to gene mutations and genomic instability. DNA damage checkpoint factors (DDCF) and DNA damage repair factors (DDRF) play a vital role in maintaining genomic integrity. However, how DDCFs and DDRFs are modulated under physiological and pathological conditions are not fully known. We took an experimental database analysis to determine the expression of 26 DNA D

    Transient Inhibition of mTORC1 Signaling Ameliorates Irradiation-Induced Liver Damage

    Get PDF
    Recurrent liver cancer after surgery is often treated with radiotherapy, which induces liver damage. It has been documented that activation of the TGF-β and NF-κB signaling pathways plays important roles in irradiation-induced liver pathologies. However, the significance of mTOR signaling remains undefined after irradiation exposure. In the present study, we investigated the effects of inhibiting mTORC1 signaling on irradiated livers. Male C57BL/6J mice were acutely exposed to 8.0 Gy of X-ray total body irradiation and subsequently treated with rapamycin. The effects of rapamycin treatment on irradiated livers were examined at days 1, 3, and 7 after exposure. The results showed that 8.0 Gy of irradiation resulted in hepatocyte edema, hemorrhage, and sinusoidal congestion along with a decrease of ALB expression. Exposure of mice to irradiation significantly activated the mTORC1 signaling pathway determined by pS6 and p-mTOR expression via western blot and immunostaining. Transient inhibition of mTORC1 signaling by rapamycin treatment consistently accelerated liver recovery from irradiation, which was evidenced by decreasing sinusoidal congestion and increasing ALB expression after irradiation. The protective role of rapamycin on irradiated livers might be mediated by decreasing cellular apoptosis and increasing autophagy. These data suggest that transient inhibition of mTORC1 signaling by rapamycin protects livers against irradiation-induced damage

    Characterizing the Structural Pattern Predicting Medication Response in Herpes Zoster Patients Using Multivoxel Pattern Analysis

    Get PDF
    Herpes zoster (HZ) can cause a blistering skin rash with severe neuropathic pain. Pharmacotherapy is the most common treatment for HZ patients. However, most patients are usually the elderly or those that are immunocompromised, and thus often suffer from side effects or easily get intractable post-herpetic neuralgia (PHN) if medication fails. It is challenging for clinicians to tailor treatment to patients, due to the lack of prognosis information on the neurological pathogenesis that underlies HZ. In the current study, we aimed at characterizing the brain structural pattern of HZ before treatment with medication that could help predict medication responses. High-resolution structural magnetic resonance imaging (MRI) scans of 14 right-handed HZ patients (aged 61.0 ± 7.0, 8 males) with poor response and 15 (aged 62.6 ± 8.3, 5 males) age- (p = 0.58), gender-matched (p = 0.20) patients responding well, were acquired and analyzed. Multivoxel pattern analysis (MVPA) with a searchlight algorithm and support vector machine (SVM), was applied to identify the spatial pattern of the gray matter (GM) volume, with high predicting accuracy. The predictive regions, with an accuracy higher than 79%, were located within the cerebellum, posterior insular cortex (pIC), middle and orbital frontal lobes (mFC and OFC), anterior and middle cingulum (ACC and MCC), precuneus (PCu) and cuneus. Among these regions, mFC, pIC and MCC displayed significant increases of GM volumes in patients with poor response, compared to those with a good response. The combination of sMRI and MVPA might be a useful tool to explore the neuroanatomical imaging biomarkers of HZ-related pain associated with medication responses

    Involvement of calcium channels in the regulation of adipogenesis

    No full text
    As an important second messenger in adipocytes, calcium ions (Ca2+) are essential in regulating various intracellular signalling pathways that control critical cellular functions. Calcium channels show selective permeability to Ca2+ and facilitate Ca2+ entry into the cytoplasm, which are normally located in the plasmatic and intracellular membranes. The increase of cytosolic Ca2+ modulates a variety of signalling pathways and results in the transcription of target genes that contribute to adipogenesis, a key cellular event includes proliferation and differentiation of adipocyte. In the past decades, the involvement of some Ca2+-permeable ion channels, such as Ca2+ release-activated Ca2+ channels, transient receptor potential channels, voltage-gated calcium channels and others, in adipogenesis has been extensively explored. In the present review, we provided a summary of the expression and contributions of these Ca2+-permeable channels in mediating Ca2+ influxes that drive adipogenesis. Moreover, we discussed their potentials as future therapeutic targets

    Wildlife Object Detection Method Applying Segmentation Gradient Flow and Feature Dimensionality Reduction

    No full text
    This work suggests an enhanced natural environment animal detection algorithm based on YOLOv5s to address the issues of low detection accuracy and sluggish detection speed when automatically detecting and classifying large animals in natural environments. To increase the detection speed of the model, the algorithm first enhances the SPP by switching the parallel connection of the original maximum pooling layer for a series connection. It then expands the model’s receptive field using the dataset from this paper to enhance the feature fusion network by stacking the feature pyramid network structure as a whole; secondly, it introduces the GSConv module, which combines standard convolution, depth-separable convolution, and hybrid channels to reduce network parameters and computation, making the model lightweight and easier to deploy to endpoints. At the same time, GS bottleneck is used to replace the Bottleneck module in C3, which divides the input feature map into two channels and assigns different weights to them. The two channels are combined and connected in accordance with the number of channels, which enhances the model’s ability to express non-linear functions and resolves the gradient disappearance issue. Wildlife images are obtained from the OpenImages public dataset and real-life shots. The experimental results show that the improved YOLOv5s algorithm proposed in this paper reduces the computational effort of the model compared to the original algorithm, while also providing an improvement in both detection accuracy and speed, and it can be well applied to the real-time detection of animals in natural environments

    Xiaolingtong versus 3G in China: Which will be the winner?

    No full text
    Xiaolingtong (XLT), a new type of mobile phone system based on PHS technology for wireless access of fixed-line telephone networks, has grown very rapidly in China. However, there are many doubts about the future of XLT once 3G (the third generation of mobile communication) is finally employed. This paper proposes a theoretical framework to assess and compare XLT and 3G from four perspectives: technology, market demand, business models and government policy. It concludes that XLT and 3G will coexist with existing 2G/2.5G mobile communication networks for a considerable period of time. With service collaboration and integration, the coexistence of both of these technologies can enhance China's mobile communication infrastructure and support the growth of mobile commerce.Mobile communication Technology assessment Business model Government policy PHS 3G 2G/2.5G

    The estimation of prevalence, incidence, and residual risk of transfusion-transmitted human hepatitis B infection from blood donated at the Anhui blood center, China, from 2009 to 2011.

    Get PDF
    BACKGROUND: The high prevalence of hepatitis B virus (HBV) among the Chinese population poses a threat to blood safety; however, few studies have examined epidemiological data regarding HBV infection of Chinese blood donors. The present study investigated the demographic characteristics of blood donors at the Anhui blood center in China, the prevalence, incidence, and residual risk (RR) associated with hepatitis B surface antigen (HBsAg) expression in terms of transfusion transmitted HBV (TTHBV) infections. METHODS: The demographic characteristics and HBV status of people who donated blood at the Anhui blood center between 2009 and 2011 were retrospectively analyzed. The incidence of HBV was estimated through HBsAg yield approach. The window period model was then used to estimate the RR of TTHBV infection. RESULTS: The typical donor at the Anhui blood center was a first-time volunteer, aged less than 25 years, unmarried, of Han ethnicity, and with an education below high school level. The prevalence of HBV infection among repeat donors, first-time donors, and all donors was 28.9, 127.2 and 82.1 per 100,000, respectively. The incidence estimate was 333.9 per 10(5) person-years. Using an infectious window period of 59 days, the RR for HBV was estimated to be 1 in 1853 between 2009 and 2011. CONCLUSIONS: The incidence and RR of HBV in Chinese blood donors are much higher than those of donors in developed countries. This is because sensitive ELISAs and nucleic acid tests are not available in China. Further work is needed to improve both the safety and availability of blood products in China

    Preparation of Active Peptides from Camellia vietnamensis and Their Metabolic Effects in Alcohol-Induced Liver Injury Cells

    No full text
    Liver damage seriously affects human health. Over 35% of cases of acute liver damage are caused by alcohol damage. Thus, finding drugs that can inhibit and effectively treat this disease is necessary. This article mainly focuses on the effect of the metabolome physical activity of active peptides in Camellia vietnamensis active peptide (CMAP) and improving liver protection. DEAE Sepharose FF ion-exchange column chromatography was used in separating and purifying crude peptides from Camellia vietnamensis Two components, A1 and A2, were obtained, and the most active A1 was selected. Sephadex G-100 gel column chromatography was used in A1 separation and purification. Three components, Al-1, Al-2, and Al-3, were obtained. Through antioxidant activity in vitro as an index of inspection, the relatively active component A1-2 was removed. Reverse-phase high-performance liquid chromatography showed that the purity of component A1-2 was 93.45%. The extracted CMAPs acted on alcoholic liver injury cells. Metabolomics studies revealed that the up-regulated metabolites were ribothymidine and xanthine; the down-regulated metabolites were hydroxyphenyllactic acid, creatinine, stearoylcarnitine, and inosine. This study provides an effective theoretical support for subsequent research

    Physiological and Transcriptional Analysis Reveals the Response Mechanism of Camellia vietnamensis Huang to Drought Stress

    No full text
    Drought stress is considered the main obstacle restricting Camellia vietnamensis Huang (C. vietnamensis) yield. Hainan is the southernmost distribution region of C. vietnamensis in China and experiences a drought period annually. To study the drought-stress-response mechanism of C. vietnamensis, we treated seedlings of drought-tolerant (HD1) and drought-sensitive (WH1) cultivars with PEG-6000 (PEG) to simulate drought stress and compared the physiology and transcriptome of their leaves at 0 d, 3 d and 6 d posttreatment. Under drought stress, the growth of C. vietnamensis was inhibited, the relative water content (RWC) of leaves decreased and the contents of malondialdehyde (MDA), antioxidant enzyme activities, osmotic regulatory substances and secondary metabolites increased. Compared with those of WH1, the leaf RWC, osmotic-regulation substance content (proline, soluble protein and soluble sugar) and antioxidant enzyme activity (superoxide dismutase, peroxidase and catalase) of HD1 were significantly increased, while the relative electrical conductivity and MDA content were significantly decreased. Compared with WH1, 2812, 2070 and 919, differentially expressed genes (DEGs) were detected in HD1 0 d, 3 d and 6 d posttreatment, respectively, and the number of DEGs increased with increasing treatment time. The detected DEGs are involved in the drought stress response of C. vietnamensis mainly through plant-hormone signal transduction and lignin and flavonoid biosynthesis pathways. Drought stress significantly activated the expression of several lignin and flavonoid biosynthesis genes in HD1. Moreover, total flavonoid and total polyphenol contents in HD1 were significantly increased, suggesting that the accumulation of flavonoids may be a key factor in the drought stress response of C. vietnamensis. Additionally, 191 DEGs were associated with coding transcription factors (TFs). This study provides insight into the molecular mechanism of the drought stress response of C. vietnamensis and provides a theoretical basis for the development and cultivation of new drought-resistant cultivars
    corecore